编辑导读:数据分析能够帮助营销人员更好地服务顾客,给顾客创造更好的价值,提高营销决策的准确率。与此同时,数据的质量问题一直是困恼营销人员的一个难题,到底如何评判数据的优劣?本文作者对此展开了说明,供大家一同参考学习。
如今,数据已成为营销活动中无可争议的关注点。有效营销活动的基础是高质量的数据,但并非所有数据都是优质的。
如果品牌依旧沿用之前互联网野蛮生长时期的定式思维,大量收集庞杂的数据,重“量”而不重“质”,那不管收集了多少数据,采用了何种分析方法或是拥有多少行业经验,都无法真正发挥数据的力量。因为基于低效数据做出的业务决策可能会让品牌付出昂贵的代价,结果不仅仅是简单地浪费营销预算,还可能损害品牌的声誉和形象。
根据Experian近期的一份行业报告指出,在全球范围内的品牌所收集的数据中,有将近三分之一都是不准确的;同时有7成的企业表示他们很难获取到直接影响营销策略的重要数据——即顾客体验相关数据。
在可预见的未来,品牌的营销活动对高质量数据的需求还会持续增长。现今顾客与品牌的互动普遍存在于多个渠道和触点上,如何利用数据来为顾客提供前后一致的体验对品牌的发展至关重要。那么,到底该如何获取高质量的数据呢?
一、如何评估数据质量?评估数据质量需要时间,精力与正确的工具。Marketer们不仅需要利用一些传统的衡量维度来考量数据,还要把数据放到应用语境中进行分析,来确保这些数据可以解决一些实际的业务需要。
如果需要更显著的效果,Marketer们需要对数据进行更深的挖掘并且考虑更新数据优化标准。
一般来说,我们可以通过以下9个关键指标来衡量数据的质量:
1. 数据隐私性(Privacy)首先,注重顾客的隐私是数据驱动营销的基础。营销活动的本质是实现商业组织与消费者之间有效的双向沟通。美国公共关系协会PRSA的研究表明,沟通的效果与“可信度、逻辑和情感共鸣”这三点息息相关。
其中,可信度便是沟通能够顺利进行的首要条件。如果品牌无法处理好顾客对隐私的顾虑,营销活动的最终效果可能也将大打折扣。
品牌在收集使用顾客信息时,应当向顾客展示自己有根据相关法律规定保证了他们必要的隐私安全。确保让顾客浏览隐私政策,并且有清晰的退出选项。
2. 准确性(Accuracy)品牌可以通过Truth-Set File(Truth-Set File指品牌的数据库中已经证实的描述某类型顾客的真实数据集,可称为“真值集合”)来评估比较品牌收集到的数据的准确程度,,从而保证品牌能够在后续的活动中,在准确的时间,通过有效的渠道,向合适的受众推送有价值的内容。
一般来说,数据库中包含已有的历史数据和通过计算得到的推断数据。而推断数据的准确度有待验证,它可能恰好是符合品牌需要的数据,也可能与品牌预期的结果大相径庭。
品牌应该使用经过多方验证的数据。当针对收集来的数据有疑问时,可以通过对比多个Truth-Set File来进行验证,以降低数据偏差的概率(在保证Truth-Set File准确性的前提下)。
3. 完整性(Coverage)数据集的完整性水平代表对数据收集目标的覆盖率,以及每条记录信息的详尽程度。空有覆盖率但缺少详细信息的数据集是没有太多实际价值的。
例如,品牌若想要实现跨渠道间无缝的顾客体验,除了需要基本的姓名和手机号外,还应该包括更多渠道和特定的顾客信息(如浏览内容、浏览频率、与品牌的互动行为的种类和频率,兴趣等)从而形成标签。
举个例子,母婴类的品牌可以收集顾客通过小程序和H5等页面参加品牌的小游戏,抽奖等活动的频率和在社区发言的数量来给顾客打上“高互动”,“低互动”,“不互动”等标签,从而在未来的营销活动中进行定制化沟通。通过这将提升品牌在跨平台触点上对顾客的识别度,更高效地进行跨渠道营销。
4. 颗粒度(Granularity)简单地说,颗粒度代表了数据集的详细与清晰程度。数据的颗粒度越高,表示细节越详尽,越有助于了解事实的全貌。
上一篇:数据质量:跨渠道营销的必谈议题 下一篇:没有了
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。